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A computational scheme for generating a random field defined on a cluster of points with 
the random field having a site-to-site correlation function close to some desired correlation 
function is presented. It is assumed that the quantity to be simulated either is, or may be 
related to, a random quantity having a joint normal distribution with the same variance at 
each site in the cluster and with a correlation coefficient between sites depending only on the 
separation of the sites. The scheme can be used for any random quantity which is defined at 
lattice sites in a cluster and may be applied, for example, to both exchange fields and 
AB-alloys. 1 ) 1985 Academic Press. Inc. 

1. I~ITR~~UCTI~N 

In this paper we describe a computational scheme for generating random clusters 
with a correlation function close, in the statistical sense, to some desired correlation 
function. The scheme was developed for use in calculations of photoemission from 
ferromagnetic metals above the Curie temperature [ 1, 21 in which we wanted to 
simulate exchange fields with varying degrees of short range order in a more 
general way than in previous calculations [3]. These calculations of photoemission 
use the recursion method [4, 51 which is a method of computing the density of 
states of a solid using a cluster of - lo3 atoms [4, 61 and is particularly useful for 
studying disordered solids [7, 81. However, the scheme we present here is not 
restricted to the simulation of exchange fields and nor is it restricted to com- 
putations by the recursion method. 

The scheme is based on a Fourier series expansion of the randomly varying 
quantity and can be used for any random quantity which is defined at lattice sites 
in a cluster. The quantity may be continuously varying or discrete-valued, as in an 
A&alloy, and may be a vector, for example, an exchange field. 

The basic scheme for continuous scalar quantites is outlined in Section 2. The 
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extension to vector quantities is discussed in Section 3. In some circumstances it is 
desirable to scale the components of each vector so that the magnitude of the vector 
quantity is the same on each site. This alters the correlation coefficient between vec- 
tors at different sites and also alters the probability distributions of the components 
of the vector. The extension to discrete valued quantities is also discussed in Sec- 
tion 3. Next, in Section 4, we show how to set up a cluster with a non-zero average 
of the quantity and discuss the way in which the expressions for the correlation 
coefficient and the probability distributions are changed. Finally, in Section 5 we 
discuss the limitations of the method, the most important of which is the 
assumption that the underlying distribution is a joint normal distribution with the 
same variance on each site and a correlation coefficient depending only on the 
separation between sites, and we also discuss the advantages of the method. 

2. OUTLINE OF METHOD 

Suppose we have a continuous, real-valued, scalar quantity M defined at N lat- 
tice sites labelled by 1. Then M(f) can be expanded in a Fourier series 

w4 = 1 (A(q) cosq.l+B(q)sinq.f), (1) 
q 

where A(q) and B(q) are random variables since M(f) is a random variable. We 
want to choose A(q) and B(q) so that the expected value of the correlation coef- 
ficient of M(I) and M(f’), defined by 

cov(~(~), MI’)) 
‘(” ,‘I= [var(M(I)) var(M(lI))]“*’ (2) 

has some desired value which depends only on the separation I- I’. If we assume (i) 
that A(q), B(q), A(q’), and B(q’) are mutually independent random variables and 
(ii) that the random variables C(q) and E(q) in the equivalent form of (1) 

MV) = 1 C(q) cos(q. I+ E(q)) 
4 

are independent with the phases t(q) being uniformly distributed on the interval 0 
to 271 then A(q) and B(q) both have normal distributions with mean 0 and variance 
C$ and the M(I) have normal distributions with mean 0 and variance cr* = C, 0: 
(see Appendix 1). We then obtain 

P(f-I’)=(l/f?) 1 a;cos(q.(f-r)) 
9 

(3) 

which can be inverted to give 

CT,’ = (d/N) c p(l) cos q .I (4) 
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if we assume, without loss of generality, that 02_~ = ai (see Appendix 2). In prin- 
ciple, therefore, we could choose a form for p(l), calculate oi, generate A(q) and 
B(q) from normal distributions with mean 0 and variance ~7;) and compute ( 1). In 
practice, since it is diflicult to choose p(l) to ensure 0: is positive when dealing with 
finite clusters, it is better to choose a form for 0: and calculate p(l). When either (3) 
or (4) is evaluated numerically the set of q’s or set of l’s used must be those with the 
shortest 141 or (II consistent with the periodic boundary conditions M(I,, fL, IZ) = 
M(l, + L,, I,., I;) = M(I,, I? + L,, 1:) = M(l,, I,., I;+ L;), where L,, L,, L; are the 
lengths of the sides of the cluster in the X-, y-, and z-directions, implied by the use 
of the Fourier series expansion. (In the context of solid state physics this means the 
q’s must lie in the first Brillouin zone [9].) 

3(a) Vector Quantities 

When the random quantity at each site is a vector, for example, an exchange 
field, we should, in general, include correlations between different components 

Pa/d4 I’) = COV(~,U)~ &?V’)) 
Jvar(M,(I)) var(fV&l’))’ 

However, to obtain a spherically symmetric distribution of the vectors M(q), in 
the sense that all directions are equally likely for each vector, we must have 

PJ4 I’) = 0 if cx#p. 

In the absence of any information concerning the behaviour of the correlation 
functions there are two simple procedures which may be followed. The first is to 
assume that the components of M are independent so that the problem of obtaining 
M(Z) reduces to the problem of obtaining each M,(I). Each M,(I) is taken to have a 
normal distribution with mean 0 and variance (T*. Consequently, the direction of 
M(f) has a spherically symmetric probability distribution. For a three-dimensional 
vector M the probability density function for (M( is 

(see Fig. 1) which has mean (T fi 8 7t and variance a*(3 - 8/7c). The estimator for the 
correlation coefficient is 

p(l) = CL WI’). MU+ I’)) 
c IWr’)12 . (5) 

Sometimes the variation of the length of the vector quantity is less important 
than the variation in its direction; for example, in local band theories of itinerant 
electron ferromagnets the magnitude of the exchange field is often assumed not to 
vary from site to site. In such cases the assumption that different components are 
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FIG. 1. The probability density p((MI), where M is a three dimensional vector. The curve shows 
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and the histogram shows the distribution of [MI on a particular 864 atom fee cluster. 

independent is inappropriate. The alternative procedure is to assume that (MI is the 
same on each site so that each component of M(I) is normalised. Each M,(I) then 
has a uniform distribution on [ - 1.0, 1.01 and Eq. (5) gives the estimator 

d(l) = c @(I’). A(r + 1) (6) 

for the expected value of the cosine of the angle between vectors on sites separated 
by 1. The relationship between 

g = qcos O(1)) 

and the correlation coeffkient originally used to find the unnormalised M(I) is 

vl = 44, (7) 

where a is a function of p (see Appendix 3). Values of a are given in Table I. 

3(b) AB-Alloys 

In this section we describe how the method may be applied to a two-valued ran- 
dom quantity. The basis of our method is that the random quantity at each site is 
continuously varying so that it may be expanded in a Fourier series. To apply the 
method to a two-valued variable it is therefore necessary to develop a mapping 
between the probability distribution for a continuous-valued random quantity 
which can be expanded in a Fourier series and that for a two-valued random quan- 
tity. 
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TABLE I 

Conversion Factor a, Relating the Correlation Coef- 
ficient between Vectors on Different Sites Used to Set 
Up a Cluster of Vectors of Varying Length and the 
Expected Value q of the Cosine of the Angle between 

Vectors on Different Sites as a Function of p 

P a d 

0.0 0.8488 0.0 
0.05 0.8490 0.0425 
0.10 0.8497 0.0850 
0.15 0.8508 0.1276 
0.20 0.8523 0.1705 

0.25 0.8542 0.2136 
0.30 0.8567 0.2570 
0.35 0.8597 0.3009 
0.40 0.8632 0.3453 
0.45 0.8673 0.3903 

0.50 0.8720 0.4360 
0.55 0.8774 0.4826 
0.60 0.8837 0.5302 
0.65 0.8908 0.5790 
0.70 0.8890 0.6293 

0.75 0.9086 0.6815 
0.80 0.9197 0.7358 
0.85 0.9328 0.7929 
0.90 0.9489 0.8540 
0.95 0.9694 0.9209 

1.00 1.0000 1.0000 

Let the two possible values of a two-valued variable T be A and B with 
probabilities 

P(T=A)=p, P(T=B)=q=l-p, 

so p is the concentration of A-sites and q is the concentration of B-sites, and define 
a new random variable 

Y=J& if T=A 

= -Jp/q if T= B. 

Then 

fv=fi)=P, ny= --Jp/4)=4, 

E(Y)=O, var(Y)=l. 
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We can write the joint probability distribution for Y at two sites as 

JYY,, Y2)=~(Y,)fYY2)(1+112Y, Yd, 

where 

(8) 

Consequently, 

which defines a correlation coefficient for the system of two-valued random quan- 
tities. 

With these definitions the expected value of Y at site 2 given the value of Y at site 
1 is given by 

QY2I Y,)=‘1,zY,. 

We can relate this to a normally distributed random variable x with mean ,U and 
variance 1 by taking T to have the value A when x > 0 and the value B when x < 0 
so that 

P=P(A)=[~‘ l/&exp(-&(x-p)‘)&. (9) 

We also take 

where the covariance matrix 

In particular, we take 

x exp (-; wfpl, “$’ (X-B)). 

It follows from (9) that 
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SO 

Wd*)-P2 
v12= 

P4 . 
(11) 

Thus we can set up a cluster with a two-valued random variable with the concen- 
tration parameter p and two-site correlation coefficient q,2 by generating a nor- 
mally distributed random variable x on the cluster with mean p related to p by (9) 
and correlation coefficient p related to ~1,~ by (10) and (11). 

4. NON-ZERO AVERAGE MAGNETISATION 

In this section we discuss how to set up a cluster in which a random vector quan- 
tity has a non-zero average value, considering, in particular, a three-dimensional 
quantity (for example, the exchange field in our calculations of photoemission from 
ferromagnets at high’temperatures [ 1, 21). There are two approaches to generating 
a random field with a non-zero average value, both based on the fact that the 
average value of the field on the cluster R is given by 

%l=A,. 

In the first approach we retain spherical symmetry while in the second we introduce 
a symmetry-breaking term. In our calculations in which we simulated an exchange 
field in a ferromagnet [ 1,2] we used the second approach because it is closer to the 
physical situation and because the resulting correlation coefficient is closer to the 
desired correlation coefficient (see below). However, we discuss both approaches, 
partly to indicate the difference between the two approaches and partly because 
there may be situations in which it is not desirable to introduce a symmetry-break- 
ing term. 

In the first approach we use the result 

WW=,h&,, 

so we can adjust the expected value of \A,,1 by adjusting the proportion of the total 
variance which is in the q = 0 mode. (In the original approach crO is small for large 
clusters since 0 0 - l/N.) Because 

setting a0 means that all the rest of the aq must be changed. A consistent way of 
doing this is to take the 

ai = 3(q) a2 
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FIG. 2. The expected correlation coefficient p( Ill) and the actual correlation coefticients calculated 
for 864 atom kc clusters set up to have a non-zero average field by fixing the variance of the q = 0 mode 
(Method 1). (a) Magnitude of expected average field, 0.5; (0) expected &l/l); ( + ) actual p([J) for two 
clusters. The magnitudes of the actual average fields on the two clusters are 0.634 (upper set) and 0.120 
(lower set). (b) Magnitude of expected average field, 0.9; (0) expected p(lrl); (+ ) actual p(lJ) for two 
clusters. The magnitudes of the actual average fields on the two clusters are 1.063 (upper set) and 0.401 
(lower set). (The units of the field are such that E(jM12) = 1.0 and the distance is in units of the lattice 
cosntant.) From these curves it can be seen that the actual p(lrl) and the actual average field may be 
quite far from the expected p(lJ) and the expected average field for clusters set up by this method. 

corresponding to some correlation coetlicient p(I) and obtain a set of 

0: = r(q) fJ2 

by setting 

1 -ro 
r(q) = 1 -p(o) - fTq), 4 f0, 

where r. is chosen to produce the desired value for E( lAoI). The new correlation 
coefficient corresponding to the cri is then given by 

(see Fig. 2). In this approach E(A,) = 0 and the separate probability distributions 
for the individual M,(I) and for JM(I)( are unchanged. 

In the second approach, we set 

EM,) = (0, 0, m), 
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choosing the z-axis to lie in the direction of the desired average field, so 

jE(A,)( = ti. 

Since 

E( IM(r)12) = 3a2 

and 

WW)12)=~ E(W(q, 41’) 

=;c a:+ti2 
cl 

we require 

1 = C r(q) + ro, 
q 

where 

that is, 

r. = rii2/3a2, 

1 r(q) = 1 - ro. 
9 

Hence the required r(q) can be found from the F(q) corresponding to some b(Z) by 

r(q) = (1 - ro) i(q). 

The new correlation coefficient corresponding to the ai is 

~(4 = r. + (1 - ro) P(4 

(see Fig. 3). The probability distributions for the M,(I) are 

-(IMI +fi)2 
*a*( 1 - ro) 

(see Fig. 4). 
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FIG. 3. Correlation coefficients for 864 atom fee clusters set up to have a non-zero average lield by 
fixing the mean of the q = 0 mode (Method 2) compared with their expected values. The distance is in 
units of the lattice constant. (a), (b), and (c) show results for clusters in which [M(f)/ varies from site to 
site. In (a) the expected average field is 0, in (b) it is 0.5, and in (c) it is 0.9 (in units such that 
QlMl*) = 1.0. (d), (eb (0 and (d, h s ow results for clusters in which /M(r)1 is the same on each site. 
Both the correlation coefficient for the unnormalised cluster p(lfl) and the expected value of the cosine of 
the angle between moments on site separated by 111, q(lJ), are shown on these graphs. In (d) and (e) the 
expected average field is 0. These two graphs show the scatter of the actual q( Ill) about the expected 
q( lf[ ). In (f) the expected average field is 0.5 and in (g) it is 0.9. These are the expected average fields in 
units such that E(jMj’)= 1.0 for the unnormalised cluster, from Table II they should be close to those 
for the normalised cluster, and these graphs show that the average fields for the normalised and unnor- 
malised clusters are the same within the statistical noise. 
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FIG. 3-Continued 

If the cluster is set up with a non-zero average field and then each M(1) is nor- 
malised then the average value of the normalised field will be different from the 
input average value. In the second approach the expected value of the final average 
field, E(M,), where M, = cos 0 is the component of the normalised field in the 
direction of the input average field, can be found numerically either from 

or from 

E(cos 0) = j; cos 8 jf p( IMI, cos 0) dlM[ &J 

qcos 0) = joK E( ~0~0 1 lMl)~(lMl) AIM/. 
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FIG. 4. The probability density p((Mj) f or clusters set up to have a non-zero average field (0, 0, ti) 
using Method 2. The curve shows 

and the histogram shows the distribution of JMI for an 864 atom fee cluster with (a) expected average 
field 0.5, (b) expected average field 0.9 in units such that E(IM12) = 1.0. 

TABLE II 

Expected Value of the z Component A?* of the Unit 
Vector fi for a Given Expected Value of the Variable 
Length Vector in the z-Direction M, (in Units of 

Ground State Magnetisation Ms., ) 

0.0 0.000 
0.1 0.092 
0.2 0.186 
0.3 0.281 
0.4 0.380 
0.5 0.484 
0.6 0.593 
0.7 0.706 
0.8 0.820 
0.9 0.922 
1.0 1.000 
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The results are shown in Table II. Because these results do not depend on the direc- 
tion of the input average field they also give the relation between the input average 
field and the final average field when a field with a non-zero average value is set up 
using the first approach. 

The relation between q defined by (7) and p defined by (2) in the first approach 
is the same as if the expected average field were zero because the probability density 
functions for the M,(I) are the same. In the second approach this relation must be 
found numerically from the probability density function (see Appendix 3). The 
results are shown in Table III. 

In both methods we have added a constant component to p(l), while maintaining 
its functional form at small 111, by adjusting the q = 0 component of its fourier series 
expansion (3 ). 

In our simulations of ferromagnets [ 1,2] if the system is at a temperature of zero 
then the magnitude and direction of the field is the same at every site. Using the 
first approach to generating a field with a non-zero average value such a state is 
characterised by having all the variance in the q=O mode with the mean value of 
each mode equal to zero so that the expected value of each M(I) is zero and the 
variance of each M(I) is E( IM(,)I 2). The mean is zero because there is no preferred 
direction in the system so although the M(I) are all parallel the system as a whole 
can rotate. Similarly, although in any particular cluster IM(r)l is the same on each 

TABLE III 

Expected Values of the Cosine of the Angle between Vectors on Different Sites q as a Function of the 
Correlation Coefftcient between the Unnormalised Vectors p and the Expected Average Magnetisation 

of the Unnormalised Vectors in the z-Direction (MZ) 

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.15 - - - 
0.1 0.09 0.09 0.09 0.09 0.09 0.12 0.15 0.21 - - - 
0.2 0.17 0.17 0.17 0.17 0.18 0.19 0.22 0.28 - - - 
0.3 0.26 0.26 0.25 0.26 0.26 0.28 0.29 0.35 0.44 - - 
0.4 0.35 0.35 0.34 0.34 0.35 0.36 0.39 0.43 0.50 - - 
0.5 0.43 0.44 0.44 0.44 0.44 0.45 0.47 0.50 0.57 - - 
0.6 0.53 0.53 0.54 0.53 0.53 0.54 0.56 0.58 0.64 - - 
0.7 0.62 0.63 0.63 0.64 0.63 0.64 0.65 0.68 0.72 0.78 - 
0.8 0.73 0.73 0.74 0.73 0.73 0.74 0.75 0.76 0.80 0.85 - 
0.9 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.89 0.92 - 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Notes. (M,) is in units of the ground state magnetisation. The values were calculated by sampling 
from the distribution functions. The number of points used to evaluate each estimate of r~ is such that the 
standard deviation of the estimate is less than 0.0032. Blanks indicate that the values of (M,) and p are 
incompatible. 
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site the value of M(I) will be different for different clusters. In general, clusters set 
up using the first approach to have the same expected correlation coefficient and 
expected average field may, in fact, have quite different average values. In practice, 
this variation in the magnitude of the expected average field, 1ii31, can lead to 
significant differences in the distribution of the normalised vectors @i from one 
cluster to another. For example, since 

E(x =&I, * 64, ( II6l,I lMsl) = coth tl- l/a, 

where 

@=A IM,l lMsl=& lM12 

the random field generated may have a quite different value of q from that expected 
(see Fig. 2). This problem does not arise in the second approach. 

In the second approach the state in which the field has the same magnitude and 
direction on every site (the ground state of a ferromagnet) is characterised by hav- 
ing the variances of all the modes equal to zero, the mean of all the q # 0 modes 
equal to zero, and the mean of the q = 0 mode equal to the average field. Thus we 
get an average field of specified size and direction. For a fixed expected correlation, 
as the expected average field is decreased the mean of the q = 0 mode decreases and 
the variances of all the modes increase. 

In both methods we have specified not only what the interaction tending to order 
the system is but also how its effect is distributed between different q-modes. The 
way in which the effect of the ordering interaction is distributed between modes of 
different q can be altered in other ways, for example, by introducing a cut-off at 
large q; that is, by decreasing 6, for large 191 and making a compensating increase 
in cr9 for small /q[. 

5. LIMITATIONS AND DESIRABLE FEATURES 

In Section 2 we assumed that A(q), A(q’), B(q) and B(q’) were mutually indepen- 
dent and showed that this implies that the random quantity on the cluster has a 
joint normal distribution with the same variance on each ,site and that the 
correlation coefficient depends only on the separation between sites. Conversely, if 

p(f,I’)=p(f-I’) 

and the random quantities M(I) have a joint normal distribution with the same 
variance on each site then A(q)+A(-q), A(q’)+A(-q’), E(q)-B(-q), and 
B(q’) - B( -q’) are mutually independent (see Appendix 4). The independence of 
A(q) and ,4(-q) and the independence of B(q) and B(-q) are additional 
assumptions introduced purely for computational convenience. 



GENERATION OF RANDOM FIELDS 367 

Hence the method will simulate exactly a cluster of any quantity with a joint nor- 
mal distribution for which the variance is the same on each site and the correlation 
coefficient depends only on the separation of the sites. For most quantities the 
assumptions that the variance is the same at each site and that the correlation coef- 
ficient between sites depends only on their separation should be reasonable. So how 
well the clusters produced by this method simulate an actual cluster of some quan- 
tity will depend on how close the actual distribution of that quantity is to a joint 
normal distribution. For some quantities it might be necessary to incorporate 
higher order correlations, i.e., higher order moments of the probability distribution. 

The procedure described in this paper is more general than that proposed by 
Cubiotti et al. [9] and does not require excessive computing time: setting-up a 
three-dimensional exchange field on an 864 atom FCC cluster takes about 1 min on 
an IBM 3081. 

APPENDIX 1 

In this appendix we show that A(q) and B(q) are normally distributed. 
The expression 

M(I)=1 (A(q) cosq.l+B(q) sinq.f) 
B 

can be written as 

W) = c C(q) wq. I+ 4q)). 9 
If we assume that the amplitude C(q) and phase E(q) are independent and that the 
phases have a uniform probability density function 

P(E) = w71, 

then the joint probability density function for C and E can be written 

P(C? E) = (V7-c) P(C), 

where the probability density function for C is p(C). Since 

PM 4 
w, B) 
- = P(C, E), 
ate, E) 

where a(A, B)/a( C, E) is the Jacobian of the transformation from (A, B) to (C, E), 
we have 

~(4 B) = (1/2W P(C). 

581/60/3-2 
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If A and B are independent 

~(4 B) = I-J(A) P(B) 

SO 

log, P(A I+ loge- P(B) = 1% ~(4 B) 
= g(W 
= g(A’ + B*), 

which implies 

log, p(A) = -A2/20;, 

log, p(B) = - B2/2a; 

because we can expand g(A* + B*) as a Taylor series which cannot include any 
terms which involve products of A2 and B* so that all terms involving (A* + B*)“, 
where n > 1, must be zero. 

Thus A(q) and B(q) are normally distributed with mean zero and the same 
variance. 

APPENDIX 2 

In this appendix we discuss the inversion of Eq. (3), 

p(l) = (l/C?) c C7; cos q. 1, 
9 

to obtain Eq. (4): 

CT; = (0*/N) c p(l) cos q. I. 

Let 

so 

r(q) = c+’ 

p(Z) = 1 r(q) cos q .I. 
q 

Let 

r”(q) = (l/N) 1 A4 cm q * 4 
I 
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then 

F(q) = f(r(q) + 4 -4)). 

We shall show that there is no loss of generality in taking r(q) = r( -9) (i.e., the 
proportion of the variance CT’ due to the modes with wavevector q is the same as 
that due to the modes with wavevector -4) so that u(q) = F(q). The four quantities 
A(q), B(q), A( -q), and B( -q) are all independent. For all f, M(I) depends only on 
the sums A(q) + A( -q) and the differences B(q) - B( -4). For each q both the sum 
and difference have variance 

a2(r(q) + 4 -4)). 

We assume that there are mutually independent quantities A”(q), A( -q), B(q), 
& -9) each with the same variance 

a2(1/2)(r(q) + 4 -q)) = 02r(q) 

such that 

44 + 4 -9) = &q, + 3 -91, 
B(q)-B(-q)=B(q)-B(-q). 

Thus the set A”(q), A”( -q), B(q), 8(-q) gives the same results as the set A(q), 
A( - q), B(q), B( -q). Hence we may take 

44) = r”(q) = (l/N Cd4 cos 4.1 

so 

0: = (a’/N) c p(l) cos q . 1. 

The fact that the results depend only on ,4(q) + A( -q) and B(q) - B( -9) 
corresponds to the fact that the Fourier series expansion (in one dimension with an 
even number of sites, for simplicity) 

q = 42n 

f(O = 1 (A(q) cos d+ B(q) sin 44 
q = -n/za 

can be written 

y = n/a 
f(l)= 1 (Mq)+A(-q)) cosd+(B(q)-W-q)) sinq0. 

C/=0 

The sum over all q is preferable to the restricted sum for numerical computation. 
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APPENDIX 3 

In this appendix we find the relation between the correlation coefficient p(f) and 

?V) = Hcos W)), 

where O(1) is the angle between the M on sites separated by 1. 
If M,, M,, and M, are independent and normally distributed then 

P(M)= 
1 

(0 $i)’ exp 
(3a.l) 

The joint probability density for M, and M,, where A and B are two different 
sites, is 

1 
p(MAT Mid = ( (zn)3 (det x)1/2) exp > 

, 

where 

and 

WIB = WA, > MA2, M,43, MB1, MB,, M,,) 

/ 1 0 O PAB O O\ 

0 1 0 0 PAB O 

z 
‘=fJ 2 ( 0 0 1 0 0 

pAB 0 0 1 0 0 * 
0 pAB 0 0 1 

PAB, 1 
0 

0 0 pAB 0 0 1 

Thus, taking a2 = 4 so that ( JMJ ’ ) = 1, 

1 
p(“Ap MB) = @/3)3 (1 _ p;B)W2) 

x exp -~(~MA~*-~PABMA.MA+ lMs12 
2(1 -d,) > 

and the conditional probability density for M, given MA is 

1 
p(MB I MA) = @/3)3/2 (1 _ P;B)W 

x exp -3 IM,12 (IMI~/IMAI*-~PAB(MA .M,)/M; + PL) 

31 -P’,,) >. 
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We change variables by letting 

R= I~,lII~,l, 

(M/t. MB) 
X=coso=(,Ma, IM,I)’ 

and we are seeking the expected value of x for a given pAB, that is, we are seeking 

v=% I PI 

The conditional probability using the new variables is 

2ll 
p(R’ x I MA) = &/3)3/2 (1 _ p2)3’2 

x (MAI R2exp 
-3 IM,12 (R2-2pxR+p2) 

2(1-p2) 

where the factor 271 arises because M, is at an angle 8, q5 to M, and integrating 
over 4 gives 27~. Hence, as p(R, x I MA) depends only on R, x, and [MAI 

P(R x 1 IWI)= 
2x 

(2~/3)~‘~ (1 - p2)3’2 

x /MAI R2 exp 
-3 IM,12 (R2-2p#+p2) 

> 2(1-p2) ’ 

8n2 
p(R’ x9 IMA1) = (2@)3 (1 _ p2)3/2 

x lM,l exp 
-3 IM,12 (R2-2pxR+p2) 

2(1-p2) ’ 

8 
AR x) = - 

(1 - p2)3’2 R2 

n (R2 - 2p~R + 1)3’ 

p(R) ,g (1 -P~)~‘~ (R2(R2 + 1)) 
7-c ((R2+ 1)‘-4~~R~)~ ’ 

Ax I N = 
((R2f l)‘-4p2R2)* 

2(R2 + l)(R’- 2p~R + 1)3’ 

Hence 
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we obtain 

rl=E(x I PI 
=Jw(x I Pt RI I PI 

=“(jg-$ P) 

where 

=- & L/G% 1 (’ -,‘“‘) [F-tan-’ ( 2~(~~~2))]~. 

When p = 1, a = 1 as expected. When p = 0, a = 8/3x. 
When the cluster has been set up to have a non-zero expected average field the 

integral of the joint probability density for M, and M, giving the expected value of 
the cosine of the angle between them cannot be done analytically. However, the 
conditional probability for MB given M, may be written 

~0% I MAI= 
1 

a3(2n( 1 - r(J( 1 - &))3’2 

x exp ( 
-IM,-((1-yZ,,)m+y,,M,)12 

2c?(l -r,)(l -y;,, ) ’ 
(3a.2) 

where 

((M~-fi).(M,-fi)) 
Y AB=KW?A2- lW2)XWs12- Id’)>)“’ 

is the correlation coefficient relative to the average field. 
The expression for the conditional probability density for M, given M, is a nor- 

mal distribution with mean (1 - yAB) rfi + yasM, and variance cr2( 1 - rO)( 1 - 75,) 
so the expected value of the cosine of the angle between vectors on two sites may be 
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estimated by generating N values of M, from the normal distribution (3a.l) with 
their associated values of M, generated using (3a.2) and calculating 

The correlation coefficient relative to the average field yAB, is related to the 
correlation coefficient relative to zero, 

(MA ' MB) 
P 

AB= ( p4A(2 p!fB12)1'2' 

(P -ro) 
‘= l-r, 

Since y must lie between - 1 and 1, for a given value of rO, 

1 > p > 2r, - 1. 

So if there is a non-zero average field on the cluster the lower limit for the 
correlation between any two moments is greater than - 1. 

The results of the calculations of 

9 AB= ccos eAB) 

for various values of m and pAB are shown in Table III. 

APPENDIX 4 

In this appendix we show that if 

p(l, I’) = p(l- I’) = p(l’ - I) 

and the random quantities M(I) have a joint normal distribution with the same 
variance on each site then A(q)+ A( -q), A(q’)+ A( -q’), B(q)--@ -q), and 
B(q’) - B( -9’) are mutually independent. 

Inverting (la) and (lc) we obtain 

(l/N) c W) cosQ’l=t(A(q)+4-q)) 
I 

and 

(l/N) C M(I) sinq.I=+(B(q)-B(-q)) 
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so the second order moment 

E((A(q)+A(-q))(A(q’)+A(-cl’)))=+ f12 C p(f)(cosq.f-sinq.I)=2o,Z 
I 

if q = q’ or q = -q’ 

=o otherwise. 

Similarly, the other second order moments are 

E((B(q)-B(-s))(B(s’)-B(-q~)))=~ o2 C p(f)(cos q. I+ sin q. I) 
I 

= 20; if q=q’ 

-2 =- N2 o2 1 p(l)(cos q. I+ sin q. I) 
I 

= -20; if q = -q’ 

=o otherwise 

E(MQ) + 4 -q))Mq’) - B( -4’))) = 0 for all q and q’. 

If the M(I) have a joint normal distribution then the above results are sufficient 
to prove that the A(q) and B(q) are mutually independent as their higher-order 
moments are either zero or factorise into products of second order moments. 
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